C-GLYCOSYL COMPOUNDS STEREOSPECIFIC SYNTHESIS OF 2,5-ANHYDRO-D-ALLOSE DERIVATIVES ua DIAZOTIZATION

CHI-DEU CHANG* AND THEODORE L HULLAR

Department of Medicinal Chemistry, State University of New York at Buffalo, Buffalo New York 14214 (U.S. 4.)

(Received April 12th, 1976, accepted for publication, after revision, October 25th, 1976)

ABSTRACT

A stereospecific synthesis of substituted derivatives of 2,5-anhydro-D allose *ita* conformational control and diazotization is described. Diazotization of the conformationally mobile methyl 2-amino-2-deoxy-α-D-altropyranoside (7) and its 3,4 6-tri-O-benzoyl derivative (8) led to a selectively disfavored, ring-contraction reaction, but, for the conformationally rigid 2-amino-1 6-anhydro-2-deoxy-3-O-p-tolylsulfonyl-β-D-altropyranose (19), the rearrangement was unequivocally channelled stereospecifically, and almost quantitatively to a 2,5-anhydro-D-alloseptanose derivative (21). Conformational assignments and rearrangement mechanism are discussed. O-Detosylation was achieved by photolysis. The 1,3-dioxolane derivative used for the protection of the anometic center was found very resistant toward acid hydrolysis, and disadvantageous in the regeneration of the free aldehyde group

INTRODUCTION

The resistance of C-nucleosides towards enzymic cleavage¹, presumably due to the greater stability of the C-glycosyl bond compared with the usual N-glycosyl bond, has made C-nucleosides interesting targets for chemical synthesis. In the past few years, several routes having a potential for the elaboration of syntheses of C-nucleosides have been reported²⁻⁶. Most of these syntheses involved intermolecular displacement or addition at the anomeric center. As in many asymmetric syntheses, such condensations present the stereochemical problem of anomeric assignment⁷. On the other hand, synthesis of C-glycosyl compounds from non-sugar precursors is handicapped by racemic intermediates^{7,6}.

2,5-Anhydro sugar derivatives are of prime importance for the synthesis of C-nucleosides, especially when their mod of synthesis gives suitable control of the stereochemistry. An ingenious synthesis of a C-nucleoside, with stereochemical control of a 2 5-anhydro sugar intermediate, has been achieved by an intramolecular

^{*}Present address: Chemical Research Department Hoffmann-La Roche, Inc., Nutley, New Jersey 07110, U.S. A.

displacement of a sulfonic ester group⁸. Deamination of certain 2-amino-2-deoxy-aldohexoses with nitrous acid constitutes the oldest route to 2.5-anhydro sugars⁹, and the chemistry of the deamination has been extensively studied ^{10,11}. The rearrangement of carbonium ions formed through a diazonium intermediate is a complex process, and certain steps are still imperfectly understood. It is well known that a group, or atom, trans and antiparallel to the amino group reactly attacks the cationic center by an "SN2-like", intramolecular displacement. Only recently has diazotization been employed in the synthesis of C-nucleosides¹². The drawbacks of this mild reaction for general use in the synthesis of 2,5-anhydro sugars are the occurrence of side reactions leading to low yields, and ambiguity as to the stereochemistry of the products.

Initially, we sought to synthesize 2,5-anhydro-p-allose (1) from the reaction of methyl 2-amino-2-deoxy- α -p-altropyranoside (7) with nitrous acid, reasoning that the dearination mechanism would lead to ring contraction of the ${}^{1}C_{4}(D)$ conformer and configurational inversion at C-2. However, the results indicated that the desired rearrangement is only a minor process, and that the major pathway involves the other conformer of 7. We have investigated this reaction for free and substituted 2-amino-2-deoxy-p-altrose. To obviate conformational mobility in the diazotization of the aminopyranoside and to exert stereochemical control on the reaction, we stereospecifically synthesized a 2,5-anhydro-p-alloseptanose derivative (21) from 2-amino-1,6-anhydro-2-deoxy-3-O-p-tolyisulfonyl- β -p-altrose (19) in excellent yield.

RESULTS AND DISCUSSION

2-Amino-2-deoxy-D-altroses were prepared by catalytic hydrogenation of the corresponding azides Methyl 2-azido-2-deoxy- α -D-altropyranoside (5) and its tri-O-benzoyl (6) and 3-O-p-tolylsulfonyl (17) derivatives were prepared from methyl 2-azido-4,6-O-benzylidene-2-deoxy- α -D-altropyranoside according to described procedures 13 1,6-Anhydro-2-azido-2-deoxy-3-O-p-tolylsulfonyl- β -D-altropyranose (18) was prepared from 17 by p-toluenesulfonic acid-catalyzed cyclization 14

The deamination of methyl 2-amino-2-deoxy-z-D-altroside (7) with sodium nitrite in acetic acid gave an intractable mixture. Acetylation of the lyophilized residue gave mixed esters which could not be resolved by chromatographic techniques. N.m. r.-spectral and microanalytical data indicated that the methoxyl group was essentially unchanged and that four acetyl substituents were present in the mixed esters. According to stereochemical studies on the deamination of aminocyclohexane^{1,1}, two plausible mechanisms for the deamination would be: (i) intramolecular displacement, through the ${}^{1}C_{4}(D)$ conformer, via an equatorial attack of the diazonium ion by the ring-oxygen atom, inversion of configuration at C-2, and then attack by solvent on the resultant, C-1 carbonium ion, to yield ring-contracted product 9, or (ii) solvolysis, SN2 displacement (availy) by solvent (inversion) through the ${}^{4}C_{1}(D)$ conformer, or capture of solvent, after decomposition of the diazonium ion the carbonium ion and nitrogen, to afford 12 (epimerization). Any

hydrolysis at the anomeric center from the former path to 1 would result in cyclizauon⁹ to 15, consequently, an acetal methine proton (instead of a free aldehyde proton) would be observed in the n m r. spectrum. Only barely appreciable signals

220

(around δ 6), attributable to the acetal¹³ of either 11 or 16 (from acetylation of the diazotized 7) were detected, suggesting the unfavorable, ring-contraction path

The singlet at δ 2 1 in the n m r spectrum of the precessed organic extract from diazotization of methyl 2-amino-3.4,6-tri-O-benzoyl-2-deoxy-x-D-altropyranoside (8) verified the general participation of the solvent (acetic acid) in the reaction A small doublet at δ 9 85, indicative of free aldehyde, and a small absorption around δ 6 for acetyl methyl acetal were ascribed to the ring-contracted derivative. The low conversion into 2,5-anhydro sugar from the conformationally mobile methyl 2-amino-2-deoxy-x-D-altroside (7) can be attributed to the thermodynamically less favorable ${}^{1}C_{4}$ (D) conformer 10

In contrast, diazouzation of 19, which has the ¹C, conformation fixed by the 1,6-anhydro ring 17, gave ring-contracted 1-O-acetyl-2,5-anhydro-3-O-p-tolylsulfonylp-alloseptanose (21) as the only isolable product (in 90% yield) in high purity Configurational assignment for 21 was based on n m r -spectral and optical analyses A dramatic change in the pattern of the sugar-ring protons in the n ni r. spectra w., observed on passing from the pyranoid to the furanoid form. The pair of doublets at 3 5 15 and 4 6 (collapsed from a proad triplet by D₂O), corresponding to H-3 and H-4, are in an AB system indicative of their relative, symmetrical, chemical environment. The values of $J_{3,4}$ (6.5 Hz) and $J_{2,3}$ or $J_{4,5}$ (~0 Hz) show vicinal coupling (comparable to the interaction of cis-methine protons and two bridgehead protons in norcamphorlike, fused, five-membered rings) consistent with their dihedral angles 18 The nonequivalent C-6 protons at 0.3.5 for H-6a and 4.1 for H-6e show normal. geminal coupling $(J_{paper}, 12.5 \text{ Hz})$ With a "Newman" projection (1) similar to that used in Horton and Turner's analysis of tri-O-acetyl- β -D-ribopyranosyl bromide 1°. small coupling-constants (<2 Hz) were observed, compatible with the dihedral angles between H-5 and two H-6 (or H-2 and H-1) of a distorted, chair conformation. The overlapping of H-2 and H-5 to a single band at δ 4.3 is attributable to their relatively symmetrical environment and small coupling with all vicinal protons. The shift of H-i (indistinct doublet) at δ 5.2 for 19 to δ 5.75 for 21 suggested the change of the alkyl acetal to an acetoxyl group at the anomeric center. The small coupling $(J_{1/2} \ 0.5 \ Hz)$. indicative of an almost perpendicular dihedral angle of H-1 and H-2, therefore indicates that the acetoxyl group is disposed equatorially. The reversal of sign of the specific optical rotation (from -1163° to +185°) suggested inversion of configuration, from Hudson's rule of isorotation²⁰ Although 21 was not obtained in crystalline form, the crystalline 4-benzoate 23 and the (2,4-dinitrophenyl)hydrazone (27) of 2,5-anhydro-4-O-benzoyl-3-O-p-tolylsulfonyl-p-allose were prepared from 21 In each case, the ir, n mr. optical, and microanalytical data were consistent with the structures proposed. The cleavage of the acetyl group by mild, acid hydrolysis of 23 (to give 24) regenerated the character of a reducing septanose, and shift of the H-1 signal from δ 5.75 to 4.9 also verified the assignment of the acetoxyl group at the anomeric center of 21

A speculation as to the unique, stereospecific, rearrangement reaction was the possibility that some relatively polar, diazotized by-product(s), such as 22, would be

overlooked, because of aqueous washing in the isolation procedure. To test for existence of any such by-product, all products from the lyophilized residue from the reaction of 19 were characterized. Treatment of the residue with benzoyl chloride afforded benzoate 23 plus diacetate 26 (in the ratio of one to four), separable by preparative t1c, and no dibenzoate 25 was observed. The preponderant 26 was unexpected, but the same results were obtained on repetition of the experiment. The acetylation is presumably due to the activation of acetate (salt) residue to acetic benzoic anhydride which, in turn, reacts more accessibly at the (less hindered) acetyl moiety. Replacement of benzoyl chloride by acetic anhydride in the esterification afforded crystalline 26 in 93% yield.

A precedent for the deamination of a conformationally locked 2-amino-2-deoxyhexopyranose has been demonstrated by Micheel et al. 21, who obtained only a 37% yield of 2,6-anhydro-D-mannopyranose from 2-amino-1,6-anhydro-2-deoxy- β -D-glucopyranose by diazotization. The axial attack of the cationic center on the ring-oxygen atom of the septanose (intermediate **H**) would, conceivably, compete

with the neighboring, electron-rich group and solvated counter-ion or solvent ¹¹. The change of the amino group to the equatorial disposition in the amino-1,6-anhydride 19 eliminated those possible side-reactions. The 1,6-anhydro ring not only locked it in the appropriate orientation but also permitted the ring-oxygen atom to be the unique nucleophile accessible to the back-side attack on the cationic center created at C-2. The inversion of configuration at the center was unequivocally established by the presence of the intact 1,6-anhydro bridge after the reaction. Thus, the stereochemical disposition of 19 confined the rearrangement mechanism of diazotization so as to give the 2,5-anhydro-p-alloseptanose derivative (21) stereospecifically. The stereochemical results from this investigation are in good agreement with the current theory ²² regarding the importance of conformational factors in the diazonium intermediate, consequently determining the outcome of the reaction

The solvolysis of endo-bicyclo[3.2 1]octan-2-yl (equatorial) p-toluenesulfonate ²³ is the nearest analogy as regards structural geometry. However, the ion-pair return phenomena, and the symmetry properties of the nonclassical, ion intermediate III, result in racemization and isomerization, which are not possible in the diazotization of 19. The reactive intermediate from 19 is more likely to be the diazonium (rather than the decomposed carbonium) ion Mechanistically, we could not distinguish whether the 1-acetoxyl group was formed by a simultaneous, SN2-like displacement, or solvent capture by the new cationic center shifted to the anomeric carbon atom, as the thermodynamically stable, equatorial, acetoxyl group resulted

Acid stability and general crystalline properties are advantages of most sulfonate derivatives²⁴, however, O-detosylation with retenuon of configuration is not always easy. Prior to the removal of the sulfonic ester group on O-3, the labile, anomeric acetal group of 21 has to be protected. In a preliminary study treatment of 23 with 1,3-propanedithiol in benzene containing p-toluenesulfonic acid gave noncrystalline 1,3-dithiane 28 and its 6-O-acetyl derivative (29) in the ratio of one to three, the latter appears to result from intramolecular migration of the acetoxyl group from the anomeric carbon atom to C-6. Acetylation of the reaction mixture afforded 29 as the only product Crystalline 1,3-diovolane derivative 30 was obtained as the only product from the acetalation of 22 with ethylene glycol. The conventional methods of O-detosylation, by sodium amalgam, Raney nickel²⁵, and sodium naphthalene²⁶, either failed, or no deprotected, free alcohol was detectable. Cleavage of the O-S bond of sulfonic ester 30 was readily achieved by photolysis at room

temperature in methanolic sodium methovide²⁷. The free alcohol, $2-\beta-\nu$ -ribo-furanosyl-1,3-diovolane (31), was purified by preparative t!c, and obtained as a colorless syrup in good yield (70%) The 2,3,5-tn-O-benzoyl (32) and -benzyl (33) derivatives were obtained as syrups from 31 Their ir, n m r, optical, and micro-analytical data were consistent with those expected for β -p-ribofuranosyl derivatives

Regeneration of the free aldehyde from the 1,3-dioxolane derivatives (32 and 33) by treatment with 1 to 4 M hydrocoloric acid in aqueous 1,4-dioxane of acetone failed, the starting material being recovered unchanged. More-drastic hydrolysis with p-toluenesulfonic acid in aqueous acetic acid at elevated temperature led to extensive decomposition of 32. A free aldehyde, supposedly 4, was obtained by hydrolysis of 33, but the n m r. and microanalytical data indicated that this aldehyde was partially decomposed. The crude aldehyde reacted with (2,4-dimirrophenyl)hydrazine, but no crystalline hydrazone or N,N-diphenylimidazolidine derivative could be obtained. The 1,3-dioxolane derivatives proved very resistant towards acid hydrolys s as compared with diphenylimidazolidines.

EXPERIMENT AL

General — All melting points are uncorrected Infrared spectra were recorded with a Perkin-Elmer 237 spectrophotometer N m.r. spectra were recorded with a Varian T-60 or A-60 spectrometer, with tetramethylsilane as the internal standard Optical rotations were measured with a Perkin-Elmer 141 polarimeter (1-am microtube), and are given to the nearest degree. Elemental microanaly es were performed by Galbraith Laboratories, Knowille, Tenn Analytical, thin-layer

chromatography (t l c) was conducted on silica gel 254, and preparative, thick-layer chromatography on layers ($2 \times 200 \times 200$ mm) of silica gel (295 and 254). Aprotic organic extracts were routinely dried with anhydrous magnesium sulfate. Solvents were removed under diminished pressure in a rotary evaporator.

Methyl 2-azido-2-deoxy- α -D-altropyranoside (5) — A solution of methyl 2-azido-4,6-O-benzylidene-2-deoxy- α -D-altropyranoside (20 g) in 1,4-dioxane (300 ml) and dilute sulfuric acid (1.2%, 120 ml) was heated overnight at 55-60° with stirring. The solution was made neutral with barium carbonate, the suspension was filtered through a Celite pad, and the filtrate was evaporated to give a solid. Recrystal lization from 95% ethanol, and washing with chloroform, gave 12.5 g (84%) of 5. The analytical sample was recrystallized from methanol, to give colorless prisms, m.p. 138-139° (lit 14 m.p. 140-141.), $v_{\rm BS}^{\rm RS}$ 2100 cm⁻¹ (N₃)

Methyl 2-amino-2-deoxy-x-D-altropyranoside (7), and its deamination with introus acid — The 2-azido-D-altroside (5) (1 g, 4.5 mmoles) in methanol (50 ml) was reduced with hydrogen under atmospheric pressure at room temperature in the presence of Adams' catalyst for 24 h. After removal of the catalyst and solvent, the resultant syrup showed a single spot (with a trace of impurities). v_{max}^{film} 1600 cm⁻¹ (NH₂) no absorption at 2100 cm⁻¹. A hygroscopic hydrochloride was obtained by passing gaseous hydrogen chloride into an ethanolic solution of the syrup, and washing the product with ether.

Sodium nitrite (0.5 g. 7.2 mmoles) in water (2.5 ml) was added dropwise to a solution of the 2-aminoaltroside hydrochloride (0.5 g. 2.1 mmoles) in aqueous acetic acid (90%, 30 ml). The solution was stirred under nitrogen and kept below 5. in an ice-bath until all gas evolution ceased (over 3 h). The mixture was then stirred for 1 h at room temperature, purged with nitrogen for 30 min, and evaporated to dryness. The residue was co-distilled with toluene to remove moisture, and acetylated with acetic anhydride (5 ml) in dry pyridine (20 ml) overnight at room temperature. The mixture was poured into ice—water, and extracted with chloroform. The extract was successively washed with 4M hydrochloric acid, water, saturated sodium hydrogen-carbonate solution, and water, dried, and evaporated to a syrup that showed a major spot, with tailing, in t.1 c. The major component was isolated by preparative t.1 c., its n.m.r. spectrum indicated that it was a mixture of acetates (presumably, 11 and 14), with acetyl (δ 2.1) and methoxyl (δ 3.5) protons in the ratio of 4 to 1.

Anal Calc for $C_{15}H_{22}O_{10}$ (both 11 and 14) C, 49 72, H, 6 08, OCH₃, 8 56 Found C, 49 89, H, 6 12, OCH₃, 9 09.

Methyl 2-anino-3,46-tri-O-benzovl-2-deoxv-2-D-altropyranoside (8) — To an ice-cooled, surred solution of the 2-azido-D-altroside 5 (1 g, 45 mmoles) in dry pyridine (20 ml) was added benzoyl chloride (25 ml, 19 mmoles), and the mixture was kept overnight at room temperature. The mixture was then poured into ice-water, and processed as in the foregoing acetylation. The benzoate 6 was obtained as a thick oil (24 g, 98%) which showed only one component in t1c, v_{max}^{real} 2100 (N₃) and 1720 cm⁻¹ (benzoate), n m r (CDCl₃): δ 3 5 (s, 3, OCH₃), 41 (q, 1, $J_{1/2}$ 3 Hz, $J_{2,3}$ 5 Hz, H-2), 485 (d, 1, H-1), and 72-82 (m, 15, Ar H).

Anal Calc for $C_{28}H_{25}N_3O_8$ C, 63 27, H, 474, N, 791 Found C, 63 14, H, 484; N, 771

The azide 6 (2 4 g, 4 5 mmoles) was reduced to anine 8 as described for 7. The crude amine hydrochloride was recrystallized from chloroform-ether to give a white, non-hygroscopic crystalline product (1.66 g, 70°) m.p. 205° (dec.) v_{max}^{BB} 3000-2500 (br) and 1610 cm⁻¹ (NH₃), n.m.r. (CDCl₃) δ 5.4 (d. 1, H-1) and 9.3 (br.s. collapsed with D-O, NH₃).

Anal Calc for $C_{28}H_{28}CINO_8$ C, 62 05, H, 5 17, Cl, 6 54, N, 2 59 Found C, 61 88, H, 5 06, Cl, 6 64, N, 2 51

Reaction of 8 with introvs acid — The amine hydroculoride 8 was deaminated with sodium nitrite as described for 7. The reaction mixture was lyophilized, and the residue partitioned between chloroform and water. The organic extracts were combined, washed, and processed, to give a syrup which was found by t 1 c. to be a mixture. Its n m r. spectrum (CDCl₃) showed a minor, aldehydic proton at δ 9.85

1,6-Anhydro-2-azido-2-deoxy-3-O-p-tolylsulfonyl- β -D-altropyranose (18) — Methyl 2-azido-2-deoxy-3-O-p-tolylsulfonyl- α -D-altropyranoside ¹³ (1.5 g. 4 mmoles) was surred in benzene (150 ml) containing p-toluenesulfonic acid dihydrate (1.5 g. 6.9 mmoles). The mixture was then boiled for 5 h under reflux (Dean-Stark trap) and cooled, ice-water was added, and the organic layer was successively washed with aqueous sodium hydrogenearbonate and water, dried and evaporated to syrup which crystallized overnight. Recrystallization from benzene-hexane afforded 18 as prisms (1.1 g. 81°5), m.p. 81–82. (lit. ¹⁴ m.p. 86–87°)

2-.1muno-1,6-anhydro-2-deoxy-3-O-p-tolyIsulfonyl- β -D-altropyranose (19) — The 1,6-anhydro-2-azido sugar (18) (3.41 g, 1 mmole) in ethyl acetate (100 ml) was reduced with hydrogen at atmospheric pressure with 5% Pd/C (1.5 g) as the catalyst. The hydrogenation was conducted for over 24 h, until no azide absorption at 2100 cm⁻¹ was observed in the ir spectrum of an aliquot of the reaction mixture. All the solids were collected by filtration, and hot methanol was used in dissolving the amine. The catalyst residue was repeatedly washed with hot methanol. Cotton-like crystals were obtained on evaporation of the solvent, these were washed with ether, to give pure 19 (2.7 g, 84%), m.p. 162-163, $[A]_D^{2-1} = 116.3^{-1}$ (c.1.1 methanol), v_{max}^{KBT} 3500, 3400, 1580 (NH₂), 3300 (br. OH), 1360, and 1200 cm⁻¹ (sulfonyl) in mir. (Me₂SO-d₆) δ 2.9 (q, 1, $J_{1,2}$ 1.5 Hz and $J_{2,3}$ 9.5 Hz, H-2), 3.6 (d, 2, exo- and endo-H-6), 3.7 (m, 1, H-4), 4.1 (q, 1, $J_{3,4}$ 4 Hz, H-3) 4.45 (q, 1, H-5), and 5.2 (d, 1, H-1), free amino protons were not resolved in the spectrum, and were probably hidden by other protons, three ammonum protons were observed (at δ 8.8) in the n mir. spectrum of the hydrochloride formed by addition of hydrogen chloride

Anal Calc for $C_{13}H_{17}NO_6S$ C. 49 51 H. 5 44, N, 4 44, S, 10 17 Found C. 49 21, H, 5 20, N, 4.19, S. 9 95

I-O-Acetyl-2 5-anhydro-3-O-p-tolylsulfonyl-D-alloseptanose (21) — The amino sugar 19 (9 0 g, 29 mmoles) was treated with sodium nitrite (4 5 g, 65 mmoles) as already described. The solvent was removed by lyophilization, the residue was dissolved in chloroform (200 ml), and the solution was successively washed with

aqueous sodium hydrogenearbonate (20 ml) and water (20 ml), dried, and evaporated to a colorless oil (9 2 g, 90%) T.1 c. showed that this product was essentially pure, only a trace of impurities being detected (at the origin). The crude product was pure enough for the next steps without further purification. The analytical sample was prepared by preparative t $|c| [z]_D^{27} + 18.5^\circ (c - 1.0, chloroform); v_{max}^{neat} 3500 (broad, OH), 1740 (acetyl), 1360, and 1180 cm⁻¹ (sulfonyl). n m r (CDCl₃)· <math>\delta$ 2 15 (s, 3, acetyl), 3 2 (br d, 1, collapsed with D₂O, $J_{4,OH}$ 6 Hz, OH-4), 3 5 (d, 1, $J_{0e,ba}$ 12 Hz, H-6a), 4 1 (dd, 1, J 12 Hz and $J_{0e,5}$ 1.8 Hz, H-6e), 4.3 (s, 2, H-2 5), 4.6 (t, collapsed to d with D₂O, 1, J 6 Hz and $J_{3,4}$ 6 5 Hz, H-4), 5 15 (d, 1, H-3), and 5.7 (incomp. d, 1, $J_{1,2}$, 0.5 Hz, H-1)

Anal Calc for C₁₅H₁₈O₈S C, 50 27; H, 5 06, S, 8 94 Found C, 49.91; H, 5.08, S, 8.58.

1-O-Acety 1-2,5-anhy dro-4-O-benzoy 1-3-O-p-toly 1sulfony 1-D-allose ptanoze (23) — The 1,6-anhydro-D-allose 19 (15g, 4.2 mmoles) was benzoylated with benzoyl chloride (3 ml, 21 mmoles) in dry pyridine, and processed as described for the other acetylations and benzoylations, to furnish a light-yellow oil. The showed the product to be a single component; it crystallized after a few days at room temperature. Recrystallization from ethanol gave white crystals (17g, 87%), mp. 155-156°, $[7]_D^{27} + 85^\circ$ (c 1.0, chloroform); $v_{max}^{KBr} = 1740$ (acetyl), 1720 (benzoyl), 1360, and 1180 cm⁻¹ (sulfonyl), n.m.r. (CDCl₃) δ 5 3 (d, 1, $J_{3,4}$ 6 5 Hz, H-3), 5 6 (d, 1, H-4), 5 76 (s, 1, H-1), and 7 0-8 0 (m, 4 Ar H for tosyl, and 5 for benzoyl).

Anal. Calc for $C_{22}H_{22}O_9S$. C, 57.13, H, 480, S, 696. Found C, 5696. H, 483; S, 680.

Very slow reaction of 23 with Fehling solution was observed, in comparison with the fast reaction of deacetylated 24 (from mild, acid hydrolysis of 23)

Actilation of the reaction mixture from diazotized 19. — A. Benzoylation. Compound 19 (1 g, 3 2 mmoles) was dearninated as described for 21. After removal of solvent by hypophilization and co-distillation with toluene, the resultant semi-solid was suspended in ice-cooled, dry pyridine (20 ml), and benzoyl chloride (2 ml, 15 ml) was slowly added dropwise. The mixture was stirred overnight at room temperature, and then processed as before, giving a syrup that contained two components (t.l.c.). The components were separated by preparative t.l.c., and characterized as the benzoate 23 (0.25 g, 17%) and acetate 26 (0.9 g, 69%)

B Acetylation 1,4-Di-O-acetyl-2,5-anh) dro-2-O-p-tolylsulfon l-p-alloseptanose (26) — The residue from the diazotization of 19 (500 mg, 1.6 mmoles) was dried as previously described, and acetic anhydride (1 ml. 10 mmoles) was added to a suspension of the product in pyridine. The mixture was stirred overnight at room temperature, and processed as before The chloroform extract contained only one component (1 l c) Crystallization of the syrup was achieved from benzene-hexane, with scratching or nucleating, to give white, crystalline 26 (600 mg, 93%), m p 124-125°, [x] $_{\rm D}^{25}$ +84 5° (c 1 0, chloroform), $v_{\rm max}^{\rm kBr}$ 1740 cm⁻¹ (acetyl); n m r (CDCl₃) δ 2 1 (s. 3, acetyl), 2 2 (s, 3, acetyl), 5 23 (d. 1, $J_{3/4}$ 6 5 Hz, H-3), 5 55 (d. 1, J 6 5 Hz, H-4), and 5 8 (s, 1, H-1).

Anal. Calc. for $C_{17}H_{20}O_9S$ C, 5100, H, 503, S, 801 Found: C, 51.13; H, 498; S, 811

2.5-Anhydro-4-O-benzovl-3-O-p-toty. Infonyl-D-alloseptanose (24). — Compound 23 (15 g, 32 mmoles) was hydrolyzed with dilute sulfuric acid as described for the preparation of 5. After filtration of barium sulfate, the filtrate was evaporated to a syrup which was partitioned between chloroform and water Evaporation of the chloroform extract gave amorphous material (12 g, 88° a) v_{max}^{neat} 3500 (br OH) and 1720 cm⁻¹ (benzoyl), n m r (CDCl₃) δ 375 (d, 1, J, 12 Hz, H-6a), 4.35 (s, 2, H-2.5), 41 (dd, 1, J 12 Hz and 15 Hz, H-6e), 49 (incomp d, 1, $J_{1,2}$ 05 Hz, H-1), 535 (d, 1, J 65 Hz, H-3), and 565 (d, 1, J 65 Hz, H-4)

A solution of crude 2.5-anhydro-D-allose 24 (100 mg) in diglyme (0.5 ml) was mixed with (2,4-dimtrophenyi)hydrazine (5% in diglyme, 5 ml) and heated on a hotwater bath. After being stirred for 10 min, the solution was diluted with water, to precipitate a brown oil which crystallized on rubbing. The crude, brown solid was recrystallized from diglyme-50% ethanol, to give yellow hydrazone 27 (130 mg), m.p. 134-135°, $[x]_D^{27} = 77$ (c.1.0, chloroform), i_{max}^{NB} 3500 (br, OH), 3200 (sharp, NH), 1710 (benzoyl), 1580 (C=N), 1500, and 1300 cm⁻¹ (NO₂) in m.r. (Me₂SO- d_e) o 3.5-3.7 (m, 3, H-5 and two H-6), 4.3 (indistinct d, 1, H-1), 4.7 (t, 1, H-2), 5.05 (br.t., 1, OH, collapsed with D₂O), 5.3-5.6 (m, 2, unresolved H-3.4), 7.0-9.0 (m, 4 Ar. H. for tosyl, 5 for benzoyl, and 3 for dimtrophenyl), and 11.2 (s. 1, collapsed with D₂O, NH)

Anal Calc for $C_{25}H_{24}O_{11}S$ C, 5200, H, 402, N, 933, S, 534. Found C, 51.75, H, 3.82; N, 9.59; S, 560

1,3-Dithiane derivatives (28 and 29). — A solution of the 25-anhydro-D-allose 23 (500 mg, 11 mmoles), 1,3-propanedithiol (2 ml, 2 mmoles), and p-toluenesulfonic acid, dihydrate (100 mg, 0.45 mmole) in dry benzene (50 ml) was boiled for 8 h under reflux (Dean-Stark trap). After azetropic distillation, the solution was cooled, successively washed with water (twice), 10% sodium hydroxide, and water, dried, and evaporated to a yellowish oil which showed two spots in t1c. A portion (200 mg) of the syrup was fractionated by preparative L1c to afford two components (28 and 29)

2-(3-O-Benzoyl-2-O-p-to¹vlsulfonyl-β-D-nbofur anosyl)-1 3-dithianc (28) — This compound had the lower mobility in t l c. yield 75 mg (23%), $[\alpha]_D^{27} = 9.0^{\circ}$ (c. 0.9, chloroform); $v_{\rm max}^{\rm neat}$ 3500 (OH), 1720 (benzoyl), 1370, and 1180 cm⁻¹ (sulfonyl); n m r. (CDCl₃) δ 2 0 (m, 2, CH₂), 28–3 0 (m, 4, S-CH₂), 3.85 (m, 2, H-5), 4 15 (d, 1, J. 5 Hz, throacetal H), 4 25 (m, 1, H-4), 4.5 (t, 1, H-1), and 5.2–5.35 (m, 2, H-2.3)

Anal Cale for $C_{23}H_{20}O_7S_3$ C, 5409, H, 513, S, 1884 Found C, 5384; H, 5.20, S, 18.58.

2-(5-O-4cetyl-3-O-benzovl-2-O-p-tolylsuifonvl-β-D-ribofinanosyl)-1,3-dithiane (29) — This compound was obtained in a yield of 210 mg (60%), $[z]_D^{27} = 13.3^{\circ}$ (c.1.0, chloroform), v_{max}^{avat} 1740 and 1720 cm⁻¹ (acetyl and benzoyl) in m.r. (CDCl₃)· δ 2.0 (m, 2, CH₂), 2.1 (s, 3, acetyl), 2.7–3.0 (m, 4, S-CH₂), 4.0 (d. 1, J.4 Hz, thio-acetal H), 4.4 (m, 3 unresolved H-4 and H-5), 4.6 (t, 1, H-1), and 5.3 (m, 2, H-2,3)

4nal Cale for $C_{25}H_{28}O_8S_3$ C, 54 33 H, 5 10, S, 17 40 Found, C, 53 98, H, 5 10, S, 17 28

2-(2-O-p-Tolylsulfonyl-β-D-ribofuranosyl)-1,3-dioxolane (30) — A solution of the crude 2,5-anhydro-D-allose 21 (1 g, 2 8 mmoles) was hydrolyzed (as described in the preparation of 24) to crude 22. The hemiacetal 22 was unstable at room temperature and so it was prepared fresh before acetalation with ethylene glycol (10 ml) in dry benzene (80 ml) containing p-toluenesulfonic acid (100 mg) as the catalyst. The azeotropic distillation was conducted for over 4 h (until no more water could be distilled). The solution was cooled, and extracted with chloroform, and the extract was successively washed with 20-ml portions of water, aqueous sodium hydrogen-carbonate, and water, dried, and evaporated to a crystalline mass. Recrystallization from benzene gave colorless needles (600 mg, 52%), mp. 115-116°, [α] $_{\rm D}^{27}$ – 22.3° (c.10, chloroform), $v_{\rm max}^{\rm KBr}$ 3500 and 3400 cm $_{\rm C}^{-1}$ (OH), n m r. (CDCl₃): δ.2.5 (s, 3, Me of tosyl), 2.6-3.0 (br. m. 2, OH), 3.8 (m. 2, H-5), 3.9 (s. 4, ethylene). 4.0-4.4 (m. 2, unresolved H-1,3), 4.8-5.0 (m. 2, superimposed thioacetal H and H-2), and 7.3-8.0 (q. 4 tosyl Ar H)

Anal Calc for C₁₅H₂₀O₈S C, 49 99 H, 5 59, S, 8 90 Found C, 49 76 H 5 49, S, 8 65

Photolytic O-detoxylation of 30 to 2- β -D-ribofuranosyl-1,3-dioxolane (31) — A methanolic solution (400 ml) of 30 (2 g, 5 5 mmoles) containing sodium methoxide (360 mg, 67 mmoles) was purged with argon for 3 min, and then irradiated with a 100-W, medium-pressure, mercury lamp in a water-cooled, quartz immersion-well (ACE Glassware) for 5 h at 30-35 while being flushed with a gentle, continuous bubbling of argon. After irradiation, the solution was light-yellow and contained a white precipitate, this was removed by filtration, the filtrate was mixed with absolute ethanol (100 ml), the mixture was filtered to remove more insoluble material, and the solid was washed with ethanol (25 ml) The filtrate and washing were combined, evaporated to dryness, and the residue triturated with benzene The benzene was decanted, and the residual syrup was redissolved in the minimal volume of ethanol and chromatographed on preparative-tic plates which were developed with 411 1-butanol-methanol-water for 8 h The plates were dried in air and 30 and the detosylated compound 30 (31) were located under short-wavelength, uv light. R_F 0 8 for 30 (dark blue) and 0 6 for 31 (faint green) Compound 31 was eluted with methanol, to give a light-yellow syrup (0.8 g, 70%), $[\alpha]_D^{2^-} + 0.5^{\circ}$ (c 1 0, methanol) $v_{\rm max}^{\rm neal}$ 3400 cm⁻¹, n m r (Me₂SO-d₆) δ 30-40 (m, unresolved sugar-ring protons and free hydroxyls). 40 (s. 4, ethylene), and 485 (d. 1, J 35 Hz, acetal H)

Anal Calc for C₈H₁₄O₆ C, 46 60, H, 6 84 Found C, 46.68, H, 6 87

2-(2,3,5-Tr₁-O-benzo₁l-β-D-r₁bofuranos₂l)-1,3-d₁o₂volane (32) — Benzoylation of 31 was conducted as described for 6, to give 32 as a colorless oil (almost quantitatively), $[x]_D^{27} + 35.9^\circ$ (c. 1.0 chloroform), v_{max}^{neat} 1720, 1600, and 1450 cm⁻¹ (benzoyl), n m r (CDCl₃)· δ 3.8-4.0 (m, 4, ethylene), 4.5-4.8 (m, 4, H-1,4,5), 5.2 (d, 1, J.2.5 Hz, acetal H), 5.7-6.0 (m, 2, H-2,3), and 7.2-8.2 (m, 15, Ar H)

Anal Calc for C29H26O9 C, 67 17, H, 5 05. Found C, 67 18, H, 5 14

 $2-(2,3,5-Tri-O-benzvl-\beta-D-ribofuranosvl)-1,3-dioxolane$ (33) — Sodium hydride (200 mg. in oil dispersion, washed with ether before use) was added to a solution of 31 (300 mg, 1.45 mmoles) in dry N,N-dimethylformide (10 ml), the suspension was surred at room temperature for 30 min, cooled to 5° in an ice-bath, and α -bromotoluene (benzyl bromide) (1 ml, 6 mmoles) was added. The mixture was stirred for two days; then, methanol (2 ml) was added to decompose the excess of benzyl bromide, and the solution was evaporated to dryness. The residue was extracted with chloroform, and the extract was washed with water, dried, and evaporated. Traces of solvent were removed under high vacuum, to afford an oil which was chromatographed on preparative-t1c plates, to give 33 (0.54 g, 77%): $[\alpha]_D^{27} + 38.5^{\circ}$ (c.1.0, chloroform), v_{max}^{nest} 1600 (weak), 1495, and 1450 cm⁻¹ (benzyl ether) in m.r. (CDCl₃) δ 3.6 (incomp. d, 2, H-5), 3.85 (s, 4, ethylene), 4.0 (m, 2, H-1.4), 4.25 (m, 2, H-2.3), 4.6 (d, 6, benzylic CH₂), 4.95 (d, 1, J.3.5 Hz, acetal H), and 7.35 (s, 15, Ar. H)

Anal Calc for C₂₉H₃₂O₆ C, 73 09, H, 6 77 Found C, 73 29, H, 6 90

Attempted regeneration of tree aldely de by acid hydrolysis — Treatment of 32 and 33 with 1 to 4M hydrochloric acid in aqueous 1,4-dioxane or acetone gave recovery of unchanged starting-materials only. A stirred solution of 33 (1.45 g, 3 mmoles) in 11 acetic acid-water (30 ml) containing p-toluenesulfonic acid dihydrate (300 mg, 1.45 mmoles) was gently heated just below the boiling point for over 5 h (until t.1c showed that most of the 33 had disappeared). The solution was evaporated to dryness, and the residue was extracted with benzene. The extract was successively washed with aqueous sodium hydrogenearbonate and water, and evaporated to a syrup. The main component was isolated by preparative t.1 c. v_{max}^{neat} 1740 cm⁻¹ (carbonyl), n.m.r. (CDCl₃) δ 9.8 (incomp. d, J 1.5 Hz, aldehydic proton)

ACKNOWLEDGMENT

The authors are grateful to Dr R S Tipson for his encouragement, and for his help in the preparation of the manuscript

FEFERENCES

- 1 R J SUH DOLNIK, Nucleoside Antibiotics, Wiley-Interscience, New York, 1970, p. 401
- 2 H. P. ALBRECHT, D. B. REPKE, AND J. G. MOFFATT, J. Org. Chem., 39 (1974) 2176-2182, and references cited therein
- 3 H OGAWA AND H TAKAHASI, J Org Chem, 39 (1974) 1374-1379
- 4 F OGAWA, A G PERNET, AND S HANESSIAN, Tetrahedron Lett., (1973) 3543-3546
- 5 G Just, A Martel, K Groginger, and M Ramiesingh Can J Chem., 53 (1975) 131-137
- 6 W J GENSLER, S CHAN AND D B BALL, J Am Chem Soc., 97 (1975) 436-437
- 7 H OHRUI, G H JONES, J G MOFFATT M L MADDON A T CHRISTENSEN, AND S K BYRAM, J Am Chem Soc 97 (1975) 4602-4613
- RT OGAWA M MATSUI, O OHORI H KUZUHARA AND S EMOTO Agric Biol Chem. 36 (1972). 1449–1451
- 9 J DEFAYE, Adv Carbohydr Chem Biochem, 25 (1970) 181-219
- 10 J M WILLIAMS, Adv Carbohydr Chern Biochem, 31 (1975) 9-79
- 11 For a brief discussion, see R. A. Moss, Chem. Eng. News. (Nov. 28, 1971) 28-35

- 12 H S EL KHADEM AND D. L. SWARTZ, Carbohydr. Res., 32 (1974) C1-C3
- 13 R D. GUTHRIE AND D MURPHY, J. Chem. Soc., (1963) 5288-5294
- 14 H KUZUHARA, H OHRUI, AND S EMOTO, Carbohydr Res. 11 (1969) 9-16
- 15 R M SILVERSTEIN AND G C BASSLER, Spectrometric Identification of Organic Compounds Wiley, New York, 1968, pp. 142-143
- 16 P R SUNDARARAJAN AND V S R RAO Tetrahedron, 24 (1968) 289-295
- 17 P. L. DURETTE AND D. HORTON, 4dv Carbohydr Cheny Biochem, 26 (1971) 49-125
- 18 (a) J. L. MARSHALL AND S. R. WALTER J. Am. Chem. Soc., 96 (1974) 6358-6362, (b) B. E. SMART, J. Org. Chem., 38 (1973) 2072-2073
- 19 D. HORTON AND W N TURNER J Org Chem., 30 (1965) 3387-3394
- 20 K Mislow Introduction of Stereochemistry, Benjamin, New York, 1966, p. 154
- 21 F MICHEEL, W. NEIER AND T. RIEDEL Chem Ber., 100 (1967) 2401-2409
- 22 M CHEREST, H FELKIN, J SIGNER, F. SIPAS, AND M TICHY J Chem Soc (1965) 2513-2521
- 23 H L GOERING AND G N. FICKS J Am Chem Soc , 90 (1968) 2848-2856
- 24 R. S. Tifson, Adv. Carbohydr. Chem., 8 (1953) 107-215, D. H. Ball and F. W. Parrish, ibid. 23 (1968) 233-280
- 25 G W KENNER AND M A MERRY, J Chem Soc., (1949) \$178-\$181
- 26 W D CLOSSON, P WRIDE, AND S BANK, J. Am Chem Soc., 88 (1966) 1581-1583
- 27 S ZEN, S TASHIMA, AND S. KOTO, Bull Chem Soc Jpn, 41 (1970) 1212-1218
- 28 H P ALBRECHT, D B. REPKE, AND J G MOFFATT, J Org Chem. 38 (1973) 1º36-1840